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The need for accurate  
and efficient diagnosis  

is growing.

O
phthalmology is at the forefront of AI research and clinical 
integration in part because of the large volumes of clinical 
and imaging data physicians collect. Deep learning (DL) 
algorithms are a subset of AI that allow machines to learn 
from data and improve their accuracy over time without 

manual programming.1 The biggest potential clinical impact of 
AI-based technology in ophthalmology is for the detection of 
diseases that are highly prevalent and visually significant and for 
which, when the conditions are identified early, treatments are 
available to improve patient outcomes. This article provides an 
overview of how AI is being used and studied for the detection of 
ocular diseases in the posterior and anterior segments.

 P O S T E R I O R S E G M E N T 
Diabetic retinopathy detection. Damage to the neurosensory 

retina from diabetic microvascular changes is referred to as 

AI for the
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diabetic retinopathy (DR). The first FDA-approved AI platform for disease detection is for DR.2 It has therefore been 
the case study for all of medicine for the evaluation and implementation of a clinically meaningful autonomous, 
AI-based diagnostic system.

By the year 2040, an estimated 600 million people will have diabetes, one-third of whom are expected to have DR,3 the 
leading cause of blindness among working-aged adults.4 Early detection through screening coupled with appropriate referral 
and treatment is critical to prevent blindness. Only 50% of all individuals with diabetes follow proper screening guidelines, 
and less than 40% of those at high risk of vision loss receive appropriate treatment.5,6 Barriers include proximity to screening 
facilities and a lack of infrastructure and specialists. The use of AI to diagnose DR may reduce the cost of screening, bias, and 
specialist labor and increase efficiency and accessibility.7 

Clinical screening involves methods such as a dilated posterior segment examination, mydriatic or nonmydriatic fundus 
photography, and teleretinal screening. In 2016, a DL system was used and successfully achieved an area under the receiver 
operating characteristic curve (AUC) of 0.98 with sensitivity and specificity of 96.8% and 87%, respectively, to detect 
referable DR defined as moderate or worse nonproliferative DR or diabetic macular edema.8 Since then, similar results have 
been achieved with other DL systems using publicly available imaging datasets.9,10 None of the results, however, has been 
validated in a real-world setting. 

A DL system has been developed and validated to detect referable DR and other ocular diseases such as age-related 
macular degeneration (AMD) and glaucoma from a community-based national DR screening program in Singapore. 
External validation in 10 diverse datasets from six countries around the globe was achieved.11 An autonomous AI platform 
approved by the FDA in 2019, LumineticsCore (formerly IDx-DR, Digital 
Diagnostics), is being integrated into clinical use. Real-world patient outcomes are 
critical to determine the platform’s true impact and increase utilization.

AMD detection. Acquired degeneration of the central retina can lead to 
significant visual impairment via geographic atrophy and/or choroidal 
neovascularization. The individual and societal impact is great: AMD is the 
leading cause of vision loss in people 50 years of age or older in the United States. 
Early intervention for neovascular AMD can restore and maintain good vision. 
With the recent FDA approval of a treatment for geographic atrophy, moreover, 
continued monitoring and early detection of intervenable disease are necessary. 

Based on the Age-Related Eye Disease Study (AREDS) stages of AMD,12 the 
AAO recommends routine ophthalmologic follow-up visits every 2 years for 
individuals with intermediate AMD. By 2040, an estimated 288 million people 
will have some form of AMD, and 10% will have intermediate or worse disease.13 
Screening the entire at-risk population in the United States would include 
more than 110 million people.14 The global burden continues to grow as the 
population ages. The potential impact of an AI-based diagnostic program is great.

AMD is diagnosed through an examination of the macula and OCT imaging. 
An early DL system trained on a DR screening population of 72,610 macular 
fundus images demonstrated an acceptable ability to detect referable AMD.11 
Subsequent systems have been developed using the AREDS dataset.15,16 One 
study using six convolutional neural networks (CNNs) to train its models 
demonstrated 84.2% sensitivity in detecting AMD with fundus photographs.16 A 
further proof of concept for a DL-based, automated assessment of referable AMD from fundus images found an accuracy of 
88.4% to 91.6% for detecting intermediate or worse AMD with their deep CNN, which was comparable to the performance 
of human experts.15 A major limitation of both studies was the lack of external validation on separate datasets, which will be 
necessary to make the technology clinically useful. The integration of both fundus and OCT imaging is also likely necessary. 

Glaucoma detection. A potentially blinding, progressive disease of the optic nerve, glaucoma clinically manifests as a loss 
of the neuroretinal rim and increased optic nerve head cupping. An estimated 112 million individuals globally will have 
glaucoma by 2040.17 Patient outcomes tend to be better when the disease is diagnosed early. The diagnosis of glaucoma can 
be challenging, however, with no specific disease defining cup-to-disc ratio. Algorithms have nevertheless been developed 
to detect glaucomatous-appearing optic nerve heads on fundus photographs, defined as discs with a vertical cup-to-disc 
ratio of 0.7 or 0.8.11,18 Using OCT images, machine learning AI has been able to distinguish between eyes with glaucomatous 
damage to the nerve fiber layer and unaffected eyes.19 

The clinical examination for glaucoma is considered in the context of function, as determined with visual field (VF) 
testing. An AI algorithm that can integrate imaging and functional testing would likely be of greatest benefit. Systems that 
analyze VFs and recognize patterns associated with glaucomatous loss have demonstrated utility for the detection of early 

The biggest potential clinical 
impact of AI-based technology 
in ophthalmology is for the 
detection of diseases that are 
highly prevalent and visually 
significant and for which ... 
treatments are available to 
improve patient outcomes.



JUNE 2023 | CATARACT & REFRACTIVE SURGERY TODAY 40

THE DIGITAL UNIVERSE  s

VF loss from glaucoma.20,21 Advances 
continue; a machine-learning algorithm 
was able to detect VF progression even 
earlier,22 and a DL algorithm was able to 
forecast future VF deficits from a single 
baseline photograph.23

One challenge in applying AI to the 
detection and diagnosis of glaucoma 
is the correlation between structure 
and function in the clinical diagnosis 
of the disease. Variability in so-called 
normal optic nerve head cupping makes 
diagnosing the disease with a single 
imaging modality unlikely. As machine 
learning algorithms evolve, however, 
there is the potential for systems that 
can diagnose glaucoma before VF 
changes become manifest, detect 
subtle signs of disease progression, and 
forecast an expected clinical course 
while integrating multiple ophthalmic 
data points.

 A N T E R I O R S E G M E N T 
AI-related research in ophthalmology 

has focused primarily on the detection 
and diagnosis of posterior segment 
diseases, but applications are emerging for 
anterior segment pathology, particularly 
in the detection of corneal ectatic disease 
and cataracts. The impact of the research 
could be significant because cataracts 
are the leading cause of reversible 
blindness worldwide, affecting nearly 
12.6 million people. Annually, 20 million 
cataract procedures are performed.24 The 
prevalence of visually significant cataracts, 
moreover, is expected to increase. 

Cataracts are detected with slit-lamp 
microscopy. Several research groups 
are examining the use of AI for the 
diagnosis and grading of cataracts 
with slit-lamp photography. ResNet, a 
validated DL algorithm, can differentiate 
between a cataract, an IOL, and a 
healthy crystalline lens (AUC > 0.99); 
detect referable disease defined as 
grade 3 and 4 cataracts based on the 
Lens Opacities Classification System 
(AUC > 0.91)25; and identify anterior 
or posterior subcapsular cataracts and 
posterior capsular opacification. Fundus 
photographs are being used for the same 

purpose.26-30 AlexNet and VisualDN, 
CNN-based ensemble algorithms, have 
demonstrated an accuracy of 86.2% in 
the grading and diagnosis of cataracts 
on fundus images.26 The benefits of this 
approach are technical and practical. 
Slit-lamp photography requires multiple 
imaging techniques—slit beam, 
retroillumination, and diffuse—making 
it more challenging and less efficient. 
Additionally, fundus imaging permits 
the simultaneous detection of posterior 
segment diseases. Small pupils and other 
opacities in the visual axis, however, 
present challenges. Beyond cataracts, 
AI technology has been applied to 
the prediction of the progression of 
posterior capsular opacification and 
the development of corneal ectasia 
after refractive surgery, the detection 
of corneal ectatic disease, and the 
optimization of biometry for IOL power 
calculations.31

 T H E F U T U R E O F A I  I N E Y E  
 P A T H O L O G Y D E T E C T I O N 

As the prevalence of eye diseases 
increases, the need for accurate and 
efficient diagnosis grows. AI algorithms 
have the demonstrated ability to detect 
conditions with high accuracy. The 
technology’s performance is expected 
to improve with the development of 
more sophisticated machine learning 
techniques and greater availability of 
medical data. It is reasonable to think AI 
will become a valuable tool in everyday 
clinical practice to facilitate earlier 
disease diagnosis and intervention and, 
ultimately, improve patient outcomes. n
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