Traumatic Aniridia and Aphakia

BY AMAR AGARWAL, MS, FRCS, FRCOPHTH; DHIVYA ASHOK KUMAR, MD; BORIS MALYUGIN, MD, PhD; DAVID C. RITTERBAND, MD; GABOR B. SCHARIOTH, MD; AND SHACHAR TAUBER, MD

CASE PRESENTATION

A 41-year-old man presents for the surgical correction of aphakia in his left eye. He has a history of trauma to this eye at age 5, followed by “eye surgery” at age 11. The examination reveals an atonic traumatic iris defect (Figure 1). The patient’s refraction is -3.00 D sphere = 20/20 OD and +10.00 -4.00 X 180 = 20/30 OS. Keratometry confirms 4.00 D of with-the-rule corneal astigmatism. His BCVA with a rigid gas permeable contact lens is 20/20 OS, but he is contact lens intolerant. What would you offer this patient for surgical rehabilitation of his aphakia and iris defect?

Figure 1. An aphakic eye suffered a traumatic loss of iris tissue.

AMAR AGARWAL, MS, FRCS, FRCOPHTH, AND DHIVYA ASHOK KUMAR, MD

The case described seems challenging due to the aphakia, high corneal astigmatism, and iris defect. Without capsular support, the IOL cannot be placed in the sulcus. Because of the preexisting iris defect, the use of an iris claw lens would be difficult. The ideal option here would therefore be to implant an IOL using the glued IOL technique (Figure 2) and to repair the iris defect.

We would calculate the IOL’s power using the SRK II formula with a target of emmetropia. Initially, we would repair the iris defect with a modified McCannel suture using 10–0 Prolene (Ethicon, Inc., Somerville, NJ). Next, we would create two partial-thickness scleral flaps of about 2.5 mm X 3 mm exactly 180º apart. Either a 23-gauge sutureless trocar infusion cannula or an anterior chamber...
BORIS MAL YUGIN, MD, PHD

This patient definitely needs to have an IOL implanted in his left eye, but the surgeon must first address several important issues, including the type of lens and its fixation as well as restoration of the iris diaphragm.

I would suture the IOL to the ciliary sulcus. Which model of IOL to use depends on the technical possibility of performing an iridoplasty in order to restore the diaphragmatic function of the pupil and repairing the iridodialysis. In Figure 1, the iris is incarcerated in the scleral-corneal scars, and a significant amount of iris tissue has been lost. Based on these findings, it will likely be impossible to form the pupil by suturing both parts of the iris. I would therefore implant an iris prosthetic device.

I also have some experience with the PMMA lenses manufactured by Morcher GmbH (Stuttgart, Germany; not available in the United States) that have a black periphery. I find they work very well but require a large incision for implantation, so they are not currently my preference.

Here in Russia, a company manufactures the foldable IOL-iris prosthetic complex in different colors (currently, 16 variations) with the results in the peer-reviewed literature. I have had a good experience with this type of implant in my clinical practice and would probably choose it in this case.

An important consideration not discussed in the case presentation is the IOP. If it is close to 10 mm Hg, this finding together with the presence of the iridodialysis might indicate a ciliary body detachment. In that case, I would perform gonioscopy and/or ultrasonic biomicroscopy preoperatively, and if the ciliary body had become detached, I would address the problem during the surgical procedure. Of course, the IOP may be normal preoperatively, but such significant trauma usually dramatically affects the trabecular meshwork. That is why IOP spikes would be highly likely in the postoperative period. I would warn the patient about the possibility that he will need pressure-lowering therapy after surgery, and I would also discuss with him the option of glaucoma surgery.

Last but not least, I would try to address this patient’s high astigmatism by making the clear corneal incision in the superior limbus for the IOL’s implantation. An against-the-rule shift should occur after the suture’s removal. The residual astigmatism should be corrected by spectacles.

DAVID C. RITTERBAND, MD

First, I would discuss realistic expectations with the patient. His eye is amenable to surgical correction, but he must be aware that more than one surgery may be required. He will likely need spectacle correction and some astigmatic treatment. He must understand that the appearance of his pupil can be improved but that it will neither function normally nor appear “normal.”

I do not believe there is enough iris tissue to allow fixation of an IOL to the iris through the placement of McCannel sutures. Scleral fixation of a CZ70BD IOL (Alcon Laboratories, Inc.) would be necessary and could be performed before possible work on the iris. I would aim for a spherical equivalent of around -3.00 D. Then, a minimum of 6 weeks after surgery, I would consider performing laser refractive surgery or astigmatic keratotomy to correct the residual cylinder.

If Figure 1 shows all that remains of the iris after the instillation of a miotic, I do not believe a cosmetic appearance can be achieved by suturing that rivals the new technology available in Europe and used on a compassionate basis in the United States. Although the Ophtec model 311 aniridia lens (Ophtec BV, Groningen, the Netherlands) can be fixated sclerally and provides both an IOL and an artificial iris, it only comes in four color palettes and looks quite synthetic in eyes with residual iris. A more pleasing cosmetic appearance could be achieved with a foldable, sutureable artificial iris implant (Artificial Iris; Dr Schmidt Intraocularlassen GmbH, SanktAugustin, Germany; http://artificial-iris.com), the color of which can be customized using photographs of the remaining iris.

GABOR B. SCHARIOTH, MD

This complex posttraumatic case requires an intensive preoperative discussion with the patient, because I envision various options for treatment.

My first choice would be a secondary implant with sutureless intrascleral fixation of the haptics. I would place the incision superiorly to reduce the astigmatism. It would be very important to have continuous anterior chamber or pars
Systemically administered quinolones including moxifloxacin have been associated with hypersensitivity reactions, even following a single dose. Discontinue use immediately and contact your physician at the first sign of a rash or allergic reaction.

Drug Interactions: Drug-drug interaction studies have not been conducted with VIGAMOX® solution. In vitro studies indicate that moxifloxacin does not inhibit CYP3A4, CYP2D6, CYP2C9, CYP2C19, or CYP1A2. Moxifloxacin is unlikely to alter the pharmacokinetics of drugs metabolized by these cytochrome P450 isozymes.

Carinoembryonic Antigen (CEA) and Infection: Long term studies in animals to determine the carcinogenic potential of moxifloxacin have not been performed. However, in a 2-year study with initiators and promoters, moxifloxacin was not carcinogenic in rats; no evidence of neoplasms were seen in the eyes of male and female Sprague-Dawley rats (approximately 21,700 times the highest recommended total daily human ophthalmic dose for a 50 kg person, on a mg/dose basis).

Moxifloxacin was not mutagenic in four bacterial strains used in the Ames Salmonella reversion assay. As with other quinolones, the positive response observed with moxifloxacin in strain TA102 using the same assay may be due to the inhibition of DNA gyrase, but was not mutagenic in the CHGP/HSGP mammalian cell gene mutation assay. An equivocal result was obtained in the same assay when V79 cells were used. Moxifloxacin was clastogenic in the V7 chromosome aberration assay, but did not induce sister chromatid exchanges in cultured rat hepatocytes. There was no evidence of genotoxicity in vivo in a microtestus or a dominant lethal test in mice.

Moxifloxacin had no effect on fertility in male and female rats at oral doses as high as 500 mg/kg/day, approximately 21,700 times the highest recommended total daily human ophthalmic dose. At 500 mg/kg daily there were slight effects on sperm morphology (head-tail separation) in male rats and on the number of cycle in female rats.

Pregnancy: Teratogenic Effects. Pregnancy Category C: Moxifloxacin was not teratogenic when administered to pregnant rats during organogenesis at oral doses as high as 500 mg/kg/day (approximately 21,700 times the highest recommended total daily human ophthalmic dose); however, decreased fetal body weights and slightly delayed fetal skeletal development were observed. There was no evidence of teratogenicity when pregnant Cynomolgus monkeys were given oral doses as high as 101 mg/kg/day (approximately 4,300 times the highest recommended total daily human ophthalmic dose). An increased incidence of smaller fetuses was observed at 100 mg/kg/day.

Since there are no adequate and well-controlled studies in pregnant women, VIGAMOX® solution should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing Mothers: Moxifloxacin has not been measured in human milk. Although it can be presumed to be excreted in human milk, Caution should be exercised when VIGAMOX® solution is administered to a nursing mother.

Pediatric Use: Safety and effectiveness of VIGAMOX® solution in infants below 1 year of age have not been established.

There is no evidence that the ophthalmic administration of VIGAMOX® solution has any effect on weight bearing joints, even though oral administration of some quinolones has been shown to cause arthritis in immature animals.

Geriatric Use: No overall differences in safety and effectiveness have been observed between elderly and younger patients.

ADVERSE REACTIONS: The most frequently reported ocular adverse events were conjunctivitis, decreased visual acuity, dry eye, keratitis, ocular discomfort, ocular hyperemia, ocular pain, ocular pruritus, subconjunctival hemorrhage, and blepharitis. These events occurred in approximately 1-6% of patients.

Nonocular adverse events reported at a rate of 1% or fewer were; increased cough, infection, otitis media, pharyngitis, rash, and rhiinus.

Rx Only

Manufactured by Alcon Laboratories, Inc.
Fort Worth, Texas 76134 USA

©2010 Alcon, Inc. VIG10500JA

CATARACT SURGERY COMPLEX CASE MANAGEMENT

SHACAR TAUBER, MD

The conservative treatment of a rigid gas permeable contact lens has served this patient well for 30 years. It should not come as a surprise that he has developed intolerance of the lens after such a long period. Before embarking on surgical intervention, however, the treating physician should confirm that all possible medical therapies to reverse contact lens intolerance have been attempted, including the management of blepharitis and dry eye syndrome and the use of improved polymers and hybrid lenses.

Assuming that the patient is a surgical candidate, both his aphakia and iris defect will need to be corrected, preferably in one straightforward surgery. The use of an iris color-matched PMMA aniridia lens has been shown in several reports to have great success.7,8 Recently, Dr. Agarwal described the use of this device in a suturesless sutures-fixated technique in which the haptics are secured in a scleral tunnel.1
Preoperatively, I would assess the patient’s risk factors for corneal and retinal disease and for glaucoma by means of slit-lamp biomicroscopy, gonioscopy, endothelial cell counts, pachymetry, optic nerve analysis, and a careful examination of the macula and peripheral retina. I would use immersion biometry and my preferred IOL formula to order the appropriate aniridia lens from the manufacturer.

Before surgery, the patient would receive a topical non-steroidal anti-inflammatory drug and a fourth-generation fluoroquinolone in an effort to prevent cystoid macular edema and endophthalmitis. At present, aniridia lenses are made of PMMA and thus are not foldable, so a large, shelved corneal-scleral incision is needed. I would perform a triamcinolone-assisted vitrectomy, preferably with the vitreous cutter placed through the pars plana, to ensure that the anterior chamber was free of vitreous traction. I would then place two sclerotomies under scleral flaps 180º apart and each 1.5 mm from the limbus. I would introduce the aniridia lens into the anterior chamber after filling it with viscoelastic. Each haptic would be externalized through the sclerotomy and placed through a scleral tunnel. Care must be taken with these haptics, because their angulation differs from that of most common IOLs. I would close the wound under keratometric control with 10–0 nylon sutures and prescribe an appropriate antibiotic and nonsteroidal anti-inflammatory drug. Postoperative care would be similar to that for sulcus-fixated secondary IOL surgery, including careful attention to the patient’s IOP and an examination of the peripheral retina and macula.

Although neither the surgery nor the surgical decisions required are complex, one issue will cause many US surgeons to consider delegating this procedure to large institutions: permission to use an aniridia lens requires an onerous application to the FDA for a human device exemption. Fortunately, the companies (Ophtec BV and Morcher GmbH) that produce the iris diaphragm lens as well as the endcapsular iris implants have a wonderful reputation for assisting US surgeons as they complete the mandated paperwork. I can only hope that, one day soon, these lenses will be available to US surgeons without this bureaucracy.

Section editor Bonnie A. Henderson, MD, is a partner in Ophthalmic Consultants of Boston and an assistant clinical professor at Harvard Medical School. Thomas A. Oetting, MS, MD, is a clinical professor at the University of Iowa in Iowa City. Tal Raviv, MD, is an attending cornea and refractive surgeon at the New York Eye and Ear Infirmary and an assistant professor of ophthalmology at New York Medical College in Valhalla. Dr. Raviv may be reached at (212) 448-1005; tal.raviv@att.net.

Amar Agarwal, MS, FRCS, FRCOphth, is the director of Dr. Agarwal’s Group of Eye Hospitals in Chennai, India. He acknowledged no financial interest in the products or companies he mentioned. Professor Agarwal may be reached at +91 44 2811 6233; dragarwal@vsnl.com.

Dhivya Ashok Kumar, MD, is a consultant in Dr. Agarwal’s Group of Eye Hospitals in Chennai, India. She acknowledged no financial interest in the products or companies she mentioned. Dr. Kumar may be reached at +91 44 2811 6233; susruta2002@gmail.com.

Boris Malyugin, MD, PhD, is a professor of ophthalmology and the chairman of the Cataract & Implant Surgery Department at the S. Fyodorov Eye Microsurgery Complex State Institution in Moscow. He acknowledged no financial interest in the products or companies he mentioned. Dr. Malyugin may be reached at +7 495 488 8511; boris.malyugin@gmail.com.

David C. Ritterband, MD, is a clinical associate professor of ophthalmology at The New York Eye and Ear Infirmary in New York City. He acknowledged no financial interest in the products or companies he mentioned. Dr. Ritterband may be reached at ritterband@msn.com.

Gabor B. Scharioth, MD, is a senior consultant at Aurelios Augenzentrum in Recklinghausen, Germany, and the University of Szeged in Szeged, Hungary. He acknowledged no financial interest in the products or companies he mentioned. Dr. Scharioth may be reached at gaborscharioth@augenzentrum.org.

Shachar Tauber, MD, is the director of ophthalmology research, cornea, and refractive surgery at St. John’s Hospital and Clinics in Springfield, Missouri. He acknowledged no financial interest in the products or companies he mentioned. Dr. Tauber may be reached at (417) 820-9743; shachartaubers@mercy.net.