Representing up to 18% of all emergency room traumas, ocular injuries are highly prevalent.\(^1\) Corneal abrasions account for up to 4% of all US occupational injuries, and approximately 20% of patients with facial burns also exhibit ocular injuries.\(^1\)

For the military, war-related ocular trauma has increased significantly due to advances in combat technology and the indiscriminate use of improvised explosive devices.\(^2\) Eye injuries represent approximately 13% to 16% of the overall injury rate among military personnel who have served in recent wars.\(^3\) Direct injuries to the ocular surface and cornea include blast and burn trauma as well as chemical exposure, and secondary damage, such as inflammation, adhesions, and infections, can also limit vision and healing.\(^3\)

THE LONG-TERM EFFECTS OF OCULAR INJURIES

As with battlefield trauma, occupational injury to the cornea can lead to epithelial defects, which in turn lead to secondary ocular infections, inflammation, corneal neovascularization, and vision loss if not treated promptly and healed rapidly. In addition, infectious keratitis (corneal infections and ulcers) that results from an exposed corneal surface can be a major cause of vision loss in both military personnel and civilians; the annual occurrence of corneal ulcers is roughly 1.5 to 2 million, and studies indicate that more than half of these cases in the United States are due to bacteria.\(^4\)

The World Health Organization estimates that corneal opacities, including corneal ulceration, are the fourth leading cause of blindness in the world.\(^5\) If corneal epithelial defects could be healed faster, the resulting infections, scars, pain, and associated blindness could be likely reduced and overall patient outcomes improved.

A HEALING POLYMER

I helped found a startup company, Jade Therapeutics, with a mission to develop locally administered polymer technologies—either on a standalone basis or as a medium to deliver...
planned investigational new drug filing with the US Food and Drug Administration, confirmed excellent safety and ocular biocompatibility. Nick Mamalis, MD, a professor of ophthalmology at the Moran Eye Center, performed the histopathology for the study.11

CMHA-S has great potential to fulfill an unmet need in humans, given the excellent safety and tolerability of this formulation and the enormous amount of efficacy data that exist with this CMHA-S as a corneal repair agent and a dry eye lubricating drop in animal models and in real-world settings. All of this preclinical and veterinary experience serves to reduce the risk for the human clinical development path.

CONCLUSION

Jade Therapeutics, with myself as principal investigator, has been awarded phase 1 and phase 2 Small Business Innovation Research grants from both the National Science Foundation and the US Department of Defense to help develop this polymer as a standalone corneal healing agent and as an anterior segment drug delivery platform. In particular, the Department of Defense sees the value of having a topical agent that can be immediately applied to the ocular surface on the battlefield that would significantly hasten the time to corneal healing, decrease complications such as infections and scarring, more rapidly restore vision, and improve the return-to-duty rate.

Barbara Wirostko, MD
- clinical adjunct associate professor, John A. Moran Eye Center, University of Utah, Salt Lake City
- adjunct associate professor, University of Utah, Department of Bioengineering, Salt Lake City
- cofounder and chief scientific officer, Jade Therapeutics
- barbara.wirostko@jadetherapeutics.com
- financial disclosure: holds stock in Jade Therapeutics and serves on its board of directors